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Abstract: A generalization of the semisimplicity concept for polyadic algebraic structures is proposed.
If semisimple structures can be presented as block diagonal matrices (resulting in the Wedderburn
decomposition), general forms of polyadic structures are given by block-shift matrices. We combine these
forms to get a general shape of semisimple nonderived polyadic structures (“double” decomposition
of two kinds). We then introduce the polyadization concept (a “polyadic constructor”), according to
which one can construct a nonderived polyadic algebraic structure of any arity from a given binary
structure. The polyadization of supersymmetric structures is also discussed. The “deformation” by
shifts of operations on the direct power of binary structures is defined and used to obtain a nonderived
polyadic multiplication. Illustrative concrete examples for the new constructions are given.
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1. Introduction

I am no poet, but if you think for yourselves, as I proceed, the facts will form a poem in
your minds.
“The Life and Letters of Faraday” (1870) by Bence Jones Michael Faraday.

The concept of simple and semisimple rings, modules, and algebras (see, e.g., [1–4])
plays a crucial role in the investigation of Lie algebras and representation theory [5–7],
as well as in category theory [8–10].

Here we first propose a generalization of this concept for polyadic algebraic struc-
tures [11], which can also be important, e.g., in the operad theory [12,13] and nonassociative
structures [14,15]. If semisimple structures can be presented in block-diagonal matrix form
(resulting to the Wedderburn decomposition [16–18]), corresponding general forms for
polyadic rings can be decomposed to block-shift matrices [19]. We combine these forms
and introduce a general shape of semisimple polyadic structures, which are nonderived
in the sense that they cannot be obtained as successive compositions of binary operations,
which can be treated as polyadic (“double”) decomposition.

Second, going in the opposite direction, we define the polyadization concept
(“polyadic constructor”) according to which one can construct a nonderived polyadic
algebraic structure of any arity from a given binary structure. Then, we briefly describe
supersymmetric structure polyadization.

Third, we propose operations “deformed” by shifts to obtain a nonderived n-ary
multiplication on the direct power of binary algebraic structures.

For these new constructions, some illustrative concrete examples are given.

2. Preliminaries

We use notation from [11,20]. In brief, a (one-set) polyadic algebraic structure A is a
set A closed with respect to polyadic operations (or n-ary multiplication) µ[n] : An → A
(n-ary magma). We denote polyads [21] by bold letters a = a(n) = (a1, . . . , an), ai ∈ A. A
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polyadic zero is defined by µ[n]
[
a(n−1), z

]
= z, z ∈ A, a(n−1) ∈ An−1, where z can be on

any place. A (positive) polyadic power `µ ∈ N is a〈`µ〉 =
(

µ[n]
)◦`µ

[
a`µ(n−1)+1

]
, a ∈ A.

An element of a polyadic algebraic structure a is called `µ-nilpotent (or simply nilpotent

for `µ = 1), if there exist `µ such that a〈`µ〉 = z. A polyadic (or n-ary) identity (or neutral
element) is defined by µ[n][a, en−1] = a, ∀a ∈ A, where a can be on any place in the

left-hand side. A one-set polyadic algebraic structure
〈

A | µ[n]
〉

is totally associative if(
µ[n]
)◦2

[a, b, c] = µ[n]
[
a, µ[n][b], c

]
= invariant, with respect to placement of the internal

multiplication on any of the n places, and a, b, c are polyads of the necessary sizes [22,23].
A polyadic semigroup S (n) is a one-set and one-operation structure in which µ[n] is totally
associative. A polyadic structure is commutative, if µ[n] = µ[n] ◦ σ, or µ[n][a] = µ[n][σ ◦ a],
a ∈ An, for all σ ∈ Sn.

A polyadic structure is solvable, if for all polyads b, c and an element x, one can
(uniquely) resolve the equation (with respect to h) for µ[n][b, x, c] = a, where x can be on
any place, and b, c are polyads of the needed lengths. A solvable polyadic structure is
called a polyadic quasigroup [24]. An associative polyadic quasigroup is called a n-ary (or
polyadic) group [25]. In an n-ary group the only solution of

µ[n][b, ā] = a, a, ā ∈ A, b ∈ An−1 (1)

is called a querelement of a and denoted by ā [26], where ā can be on any place. Any
idempotent a coincides with its querelement ā = a. The relation (1) can be considered as a
definition of the unary queroperation µ̄(1)[a] = ā [27]. For further details and definitions,
see [11].

3. Polyadic Semisimplicity

In general, simple algebraic structures are building blocks (direct summands) for the
semisimple ones satisfying special conditions (see, e.g., [1,3]).

3.1. Simple Polyadic Structures

According to the Wedderburn–Artin theorem (see, e.g., [17,18,28]), a ring which is
simple (having no two-sided ideals, except zero and the ring itself) and Artinian (having
minimal right ideals)Rsimple is isomorphic to a full d× d matrix ring

Rsimple
∼= Mat f ull

d×d(D) (2)

over a division ring D. As a corollary,

Rsimple
∼= HomD(V(d | D), V(d | D)) ≡ EndD(V(d | D)), (3)

where V(d | D) is a d-finite-dimensional vector space (left module) over D. In the same way,
a finite-dimensional simple associative algebra A over an algebraically closed field F is

A ∼= Mat f ull
d×d(F ). (4)

In the polyadic case, the structure of a simple Artinian [2, n]-ringR[2,n]
simple (with binary

addition and n-ary multiplication µ[n]) was obtained in [19], where the Wedderburn–Artin
theorem for [2, n]-rings was proved. Thus, instead of one vector space V(d | D), one should
consider a direct sum of (n− 1) vector spaces (over the same division ring D), that is,

V1(d1 | D)⊕V2(d2 | D)⊕ . . . . . .⊕Vn−1(dn−1 | D), (5)
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where Vi(di | D) is a di-dimensional polyadic vector space [23], i = 1, . . . , n − 1. Then,
instead of (3) we have the cyclic direct sum of homomorphisms

R[2,n]
simple

∼= HomD(V1(d1 | D), V2(d2 | D))⊕HomD(V2(d2 | D), V3(d3 | D))⊕ . . .

. . .⊕HomD(Vn−1(dn−1 | D), V1(d1 | D)).
(6)

This means that after choosing a suitable basis in terms of matrices (when the ring
multiplication µ[n] coincides with the product of n matrices) we have

Theorem 1. The simple polyadic ringR[2,n]
simple is isomorphic to the d× d matrix ring (cf. (2)):

R[2,n]
simple

∼= Matshi f t(n)
d×d (D) =

{
Mshi f t(n)(d× d) | ν[2], µ[n]

}
, (7)

where ν[2] and µ[n] are the binary addition and ordinary product of n matrices, Mshi f t
d×d is the

block-shift (traceless) matrix over D of the form (which follows from (6))

Mshi f t(n)(d× d)

=



0 B1(d1 × d2) . . . 0 0
0 0 B2(d2 × d3) . . . 0

0 0
. . . . . .

...
...

...
. . . 0 Bn−2(dn−2 × dn−1)

Bn−1(dn−1 × d1) 0 . . . 0 0

, (8)

where (n− 1) blocks are nonsquare matrices Bi(d′ × d′′) ∈ Mat f ull
d′×d′′(D) over the division ring

D, and d = d1 + d2 + . . . + dn−1.

Remark 1. The set of the fixed size blocks {Bi(d′ × d′′)} does not form a binary ring, because
d′ 6= d′′.

Assertion 1. The block-shift matrices of the form (8) are closed with respect to n-ary multiplication
and binary addition, and we call them n-ary matrices.

Taking distributivity into account, we arrive at the polyadic ring structure (7).

Corollary 1. In the limiting case n = 2, we have

Mshi f t(n=2)(d× d) = B1(d1 × d1) (9)

and d = d1, giving a binary ring (2).

Assertion 2. A finite-dimensional simple associative n-ary algebra A(n) over an algebraically
closed field F [29] is isomorphic to the block-shift n-ary matrix (8) over F

A(n) ∼= Matshi f t(n)
d×d (F ). (10)

3.2. Semisimple Polyadic Structures

The Wedderburn–Artin theorem for semisimple Artinian rings Rsemispl states that
Rsemispl is a finite direct product of k simple rings, each of which has the form (2). Using (3)
for each component, we decompose the d-finite-dimensional vector space (left module)
into a direct sum of length k

V(d) = W(1)
(

q(1) | D(1)
)
⊕W(2)

(
q(2) | D(2)

)
⊕ . . .⊕W(k)

(
q(k) | D(k)

)
, (11)
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where d = q(1) + q(2) + . . . + q(k). Then, instead of (3) we have the following isomorphism.
(We enumerate simple components by an upper index in round brackets (k) and block-shift
components by lower index without brackets, and the arity is an upper index in square
brackets [n].)

Rsemispl
∼= EndD(1) W(1)

(
q(1) | D(1)

)
⊕EndD(2) W(2)

(
q(2) | D(2)

)
⊕ . . .⊕ EndD(k) W(k)

(
q(k) | D(k)

)
.

(12)

With a suitable basis, the Wedderburn–Artin theorem follows.

Theorem 2. A semisimple Artinian (binary) ringRsemispl is isomorphic to the d× d matrix ring

Rsemispl
∼= Matdiag(k)

q(j)×q(j)(D) =
{

Mdiag(k)(d× d) | ν[2], µ[2]
}

, (13)

where ν[2] and µ[2] are binary addition and binary product of matrices, and Mdiag(k)(d× d) are
block-diagonal matrices of the form (which follows from (12))

Mdiag(k)(d× d) =


A(1)

(
q(1) × q(1)

)
0 . . . 0

0 A(2)
(

q(2) × q(2)
) . . .

...
...

...
. . . 0

0 0 . . . A(k)
(

q(k) × q(k)
)

, (14)

where k square blocks are full matrix rings over division rings D(j)

A(j)
(

q(j) × q(j)
)
∈ Mat f ull

q(j)×q(j)

(
D(j)

)
, j = 1, . . . , k, d = q(1) + q(2) + . . . + q(k). (15)

The same matrix structure has a finite-dimensional semisimple associative algebra A
over an algebraically closed field F (see (4)). For further details, see, e.g., [17,18,28].

General properties of semisimple Artinian [2, n]-rings were considered in [19] (for ternary
rings, see [30,31]). Here we propose a new manifest matrix structure for them.

Thus, our task is to decompose each of the Vi(di), in (5) into components as in (11)

Vi(di) = W(1)
i

(
q(1)i | D(1)

)
⊕W(2)

i

(
q(2)i | D(2)

)
⊕ . . .⊕W(k)

i

(
q(k)i | D

(k)
)

, i = 1, . . . , n− 1. (16)

In matrix language, this means that each block Bd′×d′′ from the polyadic ring (8) should
have the semisimple decomposition (14), i.e., be a block-diagonal square matrix of the
same size p × p, where p = d1 = d2 = . . . = dn−1 and the total matrix size becomes
d = (n− 1)p. Moreover, all blocks B should have diagonal blocks A of the same size, and
therefore q(j) ≡ q(j)

1 = q(j)
2 = . . . = q(j)

n−1 for all j = 1, . . . , k and p = q(1) + q(2) + . . . + q(k),
where k is the number of semisimple components. In this way, the cyclic direct sum of
homomorphisms for the semisimple polyadic rings becomes (we use different division
rings for each semisimple component as in (15))
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R[2,n]
semispl

∼= HomD(1)

(
W(1)

1

(
q(1) | D(1)

)
, W(1)

2

(
q(1) | D(1)

))
⊕HomD(2)

(
W(2)

1

(
q(2) | D(2)

)
, W(2)

2

(
q(2) | D(2)

))
⊕ . . .

. . .⊕HomD(k)

(
W(k)

1

(
q(k) | D(k)

)
, W(k)

2

(
q(k) | D(k)

))
⊕HomD(1)

(
W(1)

2

(
q(1) | D(1)

)
, W(1)

3

(
q(1) | D(1)

))
⊕HomD(2)

(
W(2)

2

(
q(2) | D(2)

)
, W(2)

3

(
q(2) | D(2)

))
⊕ . . .

. . .⊕HomD(k)

(
W(k)

2

(
q(k) | D(k)

)
, W(k)

3

(
q(k) | D(k)

))
...

⊕HomD(1)

(
W(1)

n−2

(
q(1) | D(1)

)
, W(1)

n−1

(
q(1) | D(1)

))
⊕HomD(2)

(
W(2)

n−2

(
q(2) | D(2)

)
, W(2)

n−1

(
q(2) | D(2)

))
⊕ . . .

. . .⊕HomD(k)

(
W(k)

n−2

(
q(k) | D(k)

)
, W(k)

n−1

(
q(k) | D(k)

))
⊕HomD(1)

(
W(1)

n−1

(
q(1) | D(1)

)
, W(1)

1

(
q(1) | D(1)

))
⊕HomD(2)

(
W(2)

n−1

(
q(2) | D(2)

)
, W(2)

1

(
q(2) | D(2)

))
⊕ . . .

. . .⊕HomD(k)

(
W(k)

n−1

(
q(k) | D(k)

)
, W(k)

1

(
q(k) | D(k)

))
.

(17)

After choosing a suitable basis, we obtained a polyadic analog of the Wedderburn–
Artin theorem for semisimple Artinian [2, n]-rings R[2,n]

semispl , which can be called as the
double decomposition (of the first kind or shift-diagonal ).

Theorem 3. The semisimple polyadic Artinian ringR[2,n]
semispl (of the first kind) is isomorphic to the

d× d matrix ring

R[2,n]
semispl

∼= Matshi f t-diag(n,k)
d×d (D) =

〈{
Nshi f t-diag(n,k)(d× d)

}
| ν[2], µ[n]

〉
, (18)

where ν[2], µ[n] are the binary addition and ordinary product of n matrices, Nshi f t-diag(n,k)
d×d (n is the

arity of Ns and k is number of simple components of N’s) are the block-shift n-ary matrices with
block-diagonal square blocks (which follows from (17))

Nshi f t-diag(n,k)(d× d) =



0 B(k)
1 (p× p) . . . 0 0

0 0 B(k)
2 (p× p) . . . 0

0 0
. . . . . .

...
...

...
. . . 0 B(k)

n−2(p× p)
B(k)

n−1(p× p) 0 . . . 0 0


, (19)

B(k)
i (p× p) =


A(1)

i

(
q(1) × q(1)

)
0 . . . 0

0 A(2)
i

(
q(2) × q(2)

) . . .
...

...
...

. . . 0
0 0 . . . A(k)

i

(
q(k) × q(k)

)

, (20)
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where

d = (n− 1)p, (21)

p = q(1) + q(2) + . . . + q(k), (22)

and the k square blocks A are full matrix rings over the division rings D(j)

A(j)
i

(
q(j) × q(j)

)
∈ Mat f ull

q(j)×q(j)

(
D(j)

)
, j = 1, . . . , k, i = 1, . . . , n− 1. (23)

Remark 2. By analogy with (9), in the limiting case n = 2, we have in (19) one block B(k)
1 (p× p)

only, and (20) gives its standard (binary) semisimple ring decomposition.

This allows us to introduce another possible double decomposition in the opposite
sequence to (19) and (20); we call it the second kind or reverse, or diagonal-shift. Indeed,
for a suitable basis, we first provide the standard block-diagonal decomposition (14), and
then each block obeys the block-shift decomposition (8). Here we do not write the “reverse”
analog of (17) and arrive directly at

Theorem 4. The semisimple polyadic Artinian ring R̂[2,n]
semispl (of the second kind) is isomorphic to

the d× d matrix ring

R̂[2,n]
semispl

∼= Matdiag-shi f t(n,k)
d×d (D) =

〈{
N̂diag-shi f t(n,k)(d× d)

}
| ν[2], µ[n]

〉
, (24)

where ν[2], µ[n] are the binary addition and ordinary product of n matrices, N̂diag-shi f t(n,k)
d×d (n is

arity of N̂’s and k is number of simple components of N̂’s) are the block-diagonal n-ary matrices
with block-shift nonsquare blocks

N̂diag-shi f t(n,k)(d× d) =


Â(1)

(
q(1) × q(1)

)
0 . . . 0

0 Â(2)
(

q(2) × q(2)
) . . .

...
...

...
. . . 0

0 0 . . . Â(k)
(

q(k) × q(k)
)

, (25)

Â(j)
(

q(j) × q(j)
)
=

0 B̂(j)
1

(
p(j)

1 × p(j)
2

)
. . . 0 0

0 0 B̂(j)
2

(
p(j)

2 × p(j)
3

)
. . . 0

0 0
. . . . . .

...
...

...
. . . 0 B̂(j)

n−2

(
p(j)

n−2 × p(j)
n−1

)
B̂(j)

n−1

(
p(j)

n−1 × p(j)
1

)
0 . . . 0 0


, (26)

where

q(j) = p(j)
1 + p(j)

2 + . . . + p(j)
n−1, (27)

d = q(1) + q(2) + . . . + q(k), (28)

and the (n− 1)k blocks B̂ are nonsquare matrices over the division rings D(j)

B̂(j)
i

(
p(j)

i × p(j)
i+1

)
∈ Mat f ull

p(j)
i ×p(j)

i+1

(
D(j)

)
, j = 1, . . . , k, i = 1, . . . , n− 1. (29)
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Definition 1. The ring obeying the double decomposition of the first kind (19) and (20) (of the
second kind (25) and (26)) is called a polyadic ring of the first kind (resp. of the second kind).

Proposition 1. The polyadic rings of the first and second kind are not isomorphic.

Proof. This follows from the manifest forms (19), (20), and (25), (26). In addition, in general
case, the B̂-matrices can be nonsquare (29).

Thus, the two double decompositions introduced above can lead to a new classification
for polyadic analogs of semisimple rings.

Example 1. Let us consider the double decomposition of two kinds for ternary (n = 3) rings with
two semisimple components (k = 2) and blocks as full q× q matrix rings over C. Indeed, we have
for the ternary nonderived ringsR[2,3]

semispl and R̂[2,3]
semispl of the first and second kind, respectively, the

following block structures:

Nshi f t-diag(3,2)(4q× 4q) =


0 0 A1 0
0 0 0 A2
B1 0 0 0
0 B2 0 0

,

N̂diag-shi f t(3,2)(4q× 4q) =


0 Â1 0 0

Â2 0 0 0
0 0 0 B̂1
0 0 B̂2 0

, (30)

where Ai, Bi, Âi, B̂i ∈ Mat f ull
q×q(C). In terms of component blocks, the ternary multiplications in

the ringsR[2,n]
semispl and R̂[2,3]

semispl are
kind I:

A′1B′′1 A′′′1 = A1, A′2B′′2 A′′′2 = A2, (31)

B′1 A′′1 B′′′1 = B1, B′2 A′′2 B′′′2 = B2. (32)

kind II:

Â′1 Â′′2 Â′′′1 = Â1, Â′2 Â′′1 Â′′′2 = Â2, (33)

B̂′1B̂′′2 B̂′′′1 = B̂1, B̂′2B̂′′1 B̂′′′2 = B̂2. (34)

It follows from (31), (32), and (33), (34) thatR[2,3]
semispl and R̂[2,3]

semispl are not ternary isomorphic.

Note that the sum of the block structures (30) obeys nontrivial properties.

Remark 3. Consider a binary sum of the block matrices of the first and second kind: (30)

P(3,2)(4q× 4q) = Nshi f t-diag(3,2)(4q× 4q) + N̂diag-shi f t(3,2)(4q× 4q)

=


0 Â1 A1 0

Â2 0 0 A2
B1 0 0 B̂1
0 B2 B̂2 0

.
(35)

The set of matrices (35) forms the nonderived [2, 3]-ring P [2,3] over C

P [2,3] =
〈{

P(3,2)(4q× 4q)
}
| ν[2], µ[3]

〉
, (36)
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where ν[2], µ[3] are the binary addition and ordinary product of 3 matrices (35).
Notice that the P-matrices (35) are the block-matrix versions of the circle matrices Mcirc, which

were studied in [32] in connection with 8-vertex solutions to the constant Yang–Baxter equation [33]
and the corresponding braiding quantum gates [34,35].

Supersymmetric Double Decomposition

Let us generalize the above double decomposition (of the first kind) to superrings and
superalgebras. For that we first assume that the constituent vector spaces (entering in (17))
are super vector spaces (Z2-graded vector spaces) obeying the standard decomposition into
even and odd parts:

W(j)
i

(
q(j) | D(j)

)
= W(j)

i

(
q(j)

even | D(j)
)

even
⊕W(j)

i

(
q(j)

odd | D
(j)
)

odd
, i = 1, . . . , n− 1, j = 1, . . . , k, (37)

where q(j)
even and q(j)

odd are dimensions of the even and odd spaces, respectively; q(j) =

q(j)
even + q(j)

odd.

The parity of a homogeneous element of the vector space v ∈ W(j)
i

(
q(j) | D(j)

)
is

defined by |v| = 0̄ (resp. 1̄), if v ∈ W(j)
i

(
q(j)

even | D(j)
)

even
(resp. W(j)

i

(
q(j)

odd | D
(j)
)

odd
), and

0̄, 1̄ ∈ Z2. For details, see [36,37]. In the graded case, the k square blocks A in (23) are full
supermatrix rings of the size

(
q(j)

even | q(j)
odd

)
×
(

q(j)
even | q(j)

odd

)
, while the square Bs (20) are

block-diagonal supermatrices, and the block-shift n-ary supermatrices have a nonstandard
form (19).

We assume that in super case a polyadic analog of the Wedderburn–Artin theorem for
semisimple Artinian superrings (of the first kind) is also valid, with the forms of the double
decomposition (19) and (20) being the same; however, now the As and B are corresponding
supermatrices.

4. Polyadization Concept

Here we propose a general procedure for how to construct new polyadic algebraic
structures from binary (or lower arity) ones, using the “inverse” (informally) to the block-
shift matrix decomposition (8). It can be considered as a polyadic analog of the inverse
problem of the determination of an algebraic structure from the knowledge of its Wedder-
burn decomposition [38].

4.1. Polyadization of Binary Algebraic Structures

Let a binary algebraic structure X be represented by p× p matrices By ≡ By(p× p)
over a ringR (a linear representation), where y is the set of Ny parameters corresponding
to an element x of X . As the binary addition in R transfers to the matrix addition with-
out restrictions (as opposed to the polyadic case, see below), we will consider only the
multiplicative part of the resulting polyadic matrix ring. In this way, we propose a special
block-shift matrix method to obtain n-ary semigroups (n-ary groups) from the binary ones,
but the former are not derived from the latter [11,25]. In general, this can lead to new
algebraic structures that were not known before.

Definition 2. A (block-matrix) polyadization Φpol of a binary semigroup (or group) X represented
by square p× p matrices By is an n-ary semigroup (or an n-ary group) represented by the d× d
block-shift matrices (over a ringR) of the form (8) as follows:

Qy1,...,yn−1 ≡ QBshi f t(n)
y1,...,yn−1(d× d) =



0 By1 . . . 0 0
0 0 By2 . . . 0

0 0
. . . . . .

...
...

...
. . . 0 Byn−2

Byn−1 0 . . . 0 0

, (38)
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where d = (n− 1)p, and the n-ary multiplication µ[[n]] is given by the product of n matrices (38).

In terms of the block-matrices B, the multiplication

µ[[n]]

 n︷ ︸︸ ︷
Qy′1,...,y′n−1

, Qy′′1 ,...,y′′n−1
, . . . , Qy′′′1 ,...,y′′′n−1

Qy′′′′1 ,...,y′′′′n−1

 = Qy1,...,yn−1 (39)

has the cyclic product form (see [39])

n︷ ︸︸ ︷
By′1

By′′2
. . . By′′′n−1

By′′′′1
= By1 , (40)

By′2
By′′3

. . . By′′′1
By′′′′2

= By2 , (41)

...

By′n−1
By′′1

. . . By′′′n−2
By′′′′n−1

= Byn−1 . (42)

Remark 4. The number of parameters Ny describing an element x ∈ X increases to (n− 1)Ny,

and the corresponding algebraic structure
〈{

Qy1,...,yn−1

}
| µ[[n]]

〉
becomes n-ary, and so (38) can

be treated as a new algebraic structure, which we denote by the same letter with the arities in double
square brackets X [[n]].

We now analyze some of the most general properties of the polyadization map Φpol ,
which are independent of the concrete form of the block-matrices B and over which alge-
braic structure (ring, field, etc.) they are defined. We then present some concrete examples.

Definition 3. A unique polyadization ΦUpol is a polyadization where all sets of parameters coincide

y = y1 = y2 . . . = yn−1. (43)

Proposition 2. The unique polyadization is an n-ary-binary homomorphism.

Proof. In the case of (43), all (n− 1) relations (40)–(42) coincide

n︷ ︸︸ ︷
By′By′′ . . . By′′′By′′′′ = By, (44)

which means that the ordinary (binary) product of n matrices By is mapped to the n-ary
product of matrices Qy (39)

µ[[n]]

 n︷ ︸︸ ︷
Qy′ , Qy′′ , . . . , Qy′′′Qy′′′′

 = Qy, (45)

as it should be for an n-ary-binary homomorphism, but not for a homomorphism.

Assertion 3. If matrices By ≡ By(p× p) contain the identity matrix Ep, then the n-ary identity

E(n)
d in

〈{
Qy(d× d)

}
| µ[[n]]

〉
, d = (n− 1)p has the form

E(n)
d =



0 Ep . . . 0 0
0 0 Ep . . . 0

0 0
. . . . . .

...
...

...
. . . 0 Ep

Ep 0 . . . 0 0

. (46)
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Proof. It follows from (38), (39), and (44).

In this case, the unique polyadization maps the identity matrix to the n-ary identity
ΦUpol : Ep → E(n)

d .

Assertion 4. If the matrices By are invertible ByB−1
y = B−1

y By = Ep, then each Qy1,...,yn−1 has a
querelement

Qy1,...,yn−1
=



0 By1 . . . 0 0
0 0 By2 . . . 0

0 0
. . . . . .

...
...

...
. . . 0 Byn−2

Byn−1 0 . . . 0 0

, (47)

satisfying

µ[[n]]


n︷ ︸︸ ︷

Qy1,...,yn−1 , Qy1,...,yn−1 , . . . , Qy1,...,yn−1Qy1,...,yn−1

 = Qy1,...,yn−1 (48)

where Qy1,...,yn−1
can be on any places and

Byi = B−1
yi−1

B−1
yi−2

. . . B−1
y2

B−1
y1

B−1
yn−1

B−1
yn−2

. . . B−1
yi+2

B−1
yi+1

. (49)

Proof. This follows from (47), (48), and (40), (42); consequently, by applying B−1
yi

(with
suitable indices) on both sides, we obtain (49).

Let us suppose that on the set of matrices
{

By
}

over a binary ringR, one can consider
some analog of a multiplicative character χ :

{
By
}
→ R, being a (binary) homomorphism,

such that
χ
(
By1

)
χ
(
By2

)
= χ

(
By1By2

)
. (50)

For instance, in case B ∈ GL(p,C), the determinant can be considered to have a
(binary) multiplicative character. Similarly, we can introduce

Definition 4. A polyadized multiplicative character Ø :
{

Qy1,...,yn−1

}
→ R is proportional to a

product of the binary multiplicative characters of the blocks χ
(
Byi

)
Ø
(
Qy1,...,yn−1

)
= (−1)nχ

(
By1

)
χ
(
By2

)
. . . χ

(
Byn−1

)
. (51)

The normalization factor (−1)n in (51) is needed to be consistent with the case whenR
is commutative, and the multiplicative characters are determinants. It can also be consistent
in other cases.

Proposition 3. If the ringR is commutative, then the polyadized multiplicative character Ø is an
n-ary-binary homomorphism.

Proof. It follows from (44), (45), (51), and the commutativity ofR.

Proposition 4. If the ring R is commutative and unital with the unit Ep, then the algebraic

structure
〈{

Qy1,...,yn−1

}
| µ[[n]]

〉
contains polyadic (n-ary) idempotents satisfying

By1By2 . . . Byn−1 = Ep. (52)

Proof. It follows from (45) and (46).
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4.2. Concrete Examples of the Polyadization Procedure
4.2.1. Polyadization of GL(2,C)

Consider the polyadization procedure for the general linear group GL(2,C). We

have for the 4-parameter block matrices Byi =

(
ai bi
ci di

)
∈ GL(2,C), yi =

(ai, bi, ci, di) ∈ C×C×C×C, i = 1, 2, 3. Thus, the 12-parameter 4-ary group GL[[4]](2,C) =〈{
Qy1,y2,y3

}
| µ[[4]]

〉
is represented by the following 6× 6 Q-matrices:

Qy1,y2,y3 =

 0 By1 0
0 0 By2

By3 0 0

 ∈ GL[[4]](2,C), Byi ∈ GL(2,C), i = 1, 2, 3, (53)

obeying the 4-ary multiplication:

µ[[4]]
[
Qy′1,y′2,y′3

, Qy′′1 ,y′′2 ,y′′3
, Qy′′′1 ,y′′′2 ,y′′′3

, Qy′′′′1 ,y′′′′2 ,y′′′′3

]
= Qy′1,y′2,y′3

Qy′′1 ,y′′2 ,y′′3
Qy′′′1 ,y′′′2 ,y′′′3

Qy′′′′1 ,y′′′′2 ,y′′′′3
= Qy1,y2,y3 .

(54)

In terms of the block matrices Byi , the multiplication (54) becomes (see (39)–(42))

By′1
By′′2

By′′′3
By′′′′1

= By1 , (55)

By′2
By′′3

By′′′1
By′′′′2

= By2 , (56)

By′3
By′′1

By′′′2
By′′′′3

= By3 , (57)

which can be further expressed in the B-matrix entries (its manifest form is too cumbersome
to give here).

For
{

Qy1,y2,y3

}
to be a 4-ary group, each Q-matrix should have the unique querelement

determined by the equation (see (48)):

Qy1,y2,y3Qy1,y2,y3Qy1,y2,y3 Qy1,y2,y3 = Qy1,y2,y3 , (58)

which has the solution

Qy1,y2,y3 =

 0 By1 0
0 0 By2

By3 0 0

, (59)

where (see (49))

By1 = B−1
y3

B−1
y2

, By2 = B−1
y1

B−1
y3

, By3 = B−1
y2

B−1
y1

. (60)

In the manifest form, the querelements of GL[[4]](2,C) are (59), where

By1 =
1

∆3∆2

(
b3c2 + d3d2 −b3a2 − d3b2
−a3c2 − c3d2 a3a2 + c3b2

)
(61)

By2 =
1

∆2∆3

(
b1c3 + d1d3 −b1a3 − d1b3
−a1c3 − c1d3 a1a3 + c1b3

)
(62)

By3 =
1

∆2∆1

(
b2c1 + d2d1 −b2a1 − d2b1
−a2c1 − c2d1 a2a1 + c2b1

)
, (63)

where ∆i = aidi − bici 6= 0 are the (nonvanishing) determinants of Byi .

Definition 5. We call GL[[4]](2,C) a polyadic (4-ary) general linear group.
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If we take the binary multiplicative characters to be determinants χ
(
Byi

)
= ∆i 6= 0,

then the polyadized multiplicative character in GL[[4]](2,C) becomes

Ø
(
Qy1,y2,y3

)
= ∆1∆2∆3, (64)

which is a 4-ary-binary homomorphism, because (see (55)–(57))

Ø
(

Qy′1,y′2,y′3

)
Ø
(

Qy′′1 ,y′′2 ,y′′3

)
Ø
(

Qy′′′1 ,y′′′2 ,y′′′3

)
Ø
(

Qy′′′1 ,y′′′2 ,y′′′3

)
=
(
∆′1∆′2∆′3

)(
∆′′1 ∆′′2 ∆′′3

)(
∆′′′1 ∆′′′2 ∆′′′3

)(
∆′′′′1 ∆′′′′2 ∆′′′′3

)
=
(
∆′1∆′′2 ∆′′′3 ∆′′′′1

)(
∆′2∆′′3 ∆′′′1 ∆′′′′2

)(
∆′3∆′′1 ∆′′′2 ∆′′′′3

)
= Ø

(
Qy′1,y′2,y′3

Qy′′1 ,y′′2 ,y′′3
Qy′′′1 ,y′′′2 ,y′′′3

Qy′′′′1 ,y′′′′2 ,y′′′′3

)
.

(65)

The 4-ary identity E(4)
6 of GL[[4]](2,C) is unique and has the form (see (46))

E(4)
6 =

 0 E2 0
0 0 E2

E2 0 0

, (66)

where E2 is the identity of GL(2,C). The 4-ary identity E(4)
6 satisfies the 4-ary idempotence

relation
E(4)

6 E(4)
6 E(4)

6 E(4)
6 = E(4)

6 . (67)

In general, the 4-ary group GL[[4]](2,C) contains an infinite number of 4-ary idempo-
tents Qidemp

y1,y2,y3 defined by the system of equations

Qidemp
y1,y2,y3Qidemp

y1,y2,y3Qidemp
y1,y2,y3Qidemp

y1,y2,y3 = Qidemp
y1,y2,y3 , (68)

which gives
Bidemp

y1 Bidemp
y2 Bidemp

y3 = E2, (69)

or manifestly
a1a2a3 + a1b2c3 + a3b1c2 + b1c3d2 = 1, (70)

a2b3c1 + b2c1d3 + b3c2d1 + d1d2d3 = 1, (71)

a1a2b3 + a1b2d3 + b1b3c2 + b1d2d3 = 0, (72)

a2a3c1 + a3c2d1 + b2c1c3 + c3d1d2 = 0. (73)

The infinite set of idempotents in GL[[4]](2,C) is determined by 12− 4 = 8 complex
parameters, because one block matrix (with 4 complex parameters) can always be excluded
using the Equation (69).

Remark 5. The above example shows how “far” polyadic groups can be formed from ordinary
(binary) groups: the former can contain an infinite number of 4-ary idempotents determined by
(70)–(73), in addition to the standard idempotent in any group, the 4-ary identity (66).

4.2.2. Polyadization of SO(2,R)
Here we provide a polyadization for the simplest subgroup of GL(2,C), the special or-

thogonal group SO(2,R). In the matrix form, SO(2,R) is represented by the one-parameter
rotation matrix

B(α) =
(

cos α − sin α
sin α cos α

)
∈ SO(2,R), α ∈ R�2πZ, (74)
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satisfying the commutative multiplication

B(α)B(β) = B(α + β), (75)

and the (binary) identity E2 is B(0). Therefore, the inverse element for B(α) is B(−α).
The 4-ary polyadization of SO(2,R) is given by the 3-parameter 4-ary group of Q-

matrices SO[[4]](2,R) =
〈
{Q(α, β, γ)} | µ[[4]]

〉
, where (cf. (53))

Q(α, β, γ) =

 0 B(α) 0
0 0 B(β)

B(γ) 0 0

 (76)

=



0 0 cos α − sin α 0 0
0 0 sin α cos α 0 0
0 0 0 0 cos β − sin β
0 0 0 0 sin β cos β

cos γ − sin γ 0 0 0 0
sin γ cos γ 0 0 0 0

, α, β, γ ∈ R�2πZ, (77)

and the 4-ary multiplication is

µ[[4]][Q(α1, β1, γ1), Q(α2, β2, γ2), Q(α3, β3, γ3), Q(α4, β4, γ4)]

= Q(α1, β1, γ1)Q(α2, β2, γ2)Q(α3, β3, γ3)Q(α4, β4, γ4)

= Q(α1 + β2 + γ3 + α4, β1 + γ2 + α3 + β4, γ1 + α2 + β3 + γ4) = Q(α, β, γ),

(78)

which is noncommutative, as opposed to the binary product of B-matrices (75).
The querelement Q(α, β, γ) for a given Q(α, β, γ) is defined by the equation (see (58))

Q(α, β, γ)Q(α, β, γ)Q(α, β, γ)Q(α, β, γ) = Q(α, β, γ), (79)

which has the solution

Q(α, β, γ) = Q(−β− γ,−α− γ,−α− β). (80)

Definition 6. We call SO[[4]](2,R) a polyadic (4-ary) special orthogonal group, and Q(α, β, γ) is
called a polyadic (4-ary) rotation matrix.

Informally, the matrix Q(α, β, γ) represents the polyadic (4-ary) rotation. There is
an infinite number of polyadic (4-ary) identities (neutral elements) E(α, β, γ) which are
defined by

E(α, β, γ)E(α, β, γ)E(α, β, γ)Q(α, β, γ) = Q(α, β, γ), (81)

and the solution is
E(α, β, γ) = Q(α, β, γ), α + β + γ = 0. (82)

It follows from (81) that E(α, β, γ) are 4-ary idempotents (see (67) and Remark 5).
The determinants of B(α) and Q(α, β, γ) are 1, and therefore the corresponding multi-

plicative characters and polyadized multiplicative characters (51) are also equal to one.
Compared with the successive products of four B-matrices (74)

B(α1)B(α2)B(α3)B(α4) = B(α1 + α2 + α3 + α4), (83)

we observe that 4-ary multiplication (78) gives a shifted sum of four angles.
More exactly, for the triple (α, β, γ) we introduce the circle (left) shift operator by

sα = β, sβ = γ, sγ = α (84)
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with the property s3 = id. Then, the 4-ary multiplication (78) becomes

µ[[4]][Q(α1, β1, γ1), Q(α2, β2, γ2), Q(α3, β3, γ3), Q(α4, β4, γ4)]

= Q
(
α1 + sα2 + s2α3 + α4, β1 + sβ2 + s2β3 + β4, γ1 + sγ2 + s2γ3 + γ4

)
.

(85)

The querelement has the form

Q(α, β, γ) = Q
(
−sα− s2α,−sβ− s2β,−sγ− s2γ

)
. (86)

The multiplication (85) can be (informally) expressed in terms of a new operation, the
4-ary “cyclic shift addition” defined on R×R×R by (see (78))

˚ [4]
s [(α1, β1, γ1), (α2, β2, γ2), (α3, β3, γ3), (α4, β4, γ4)]

= (α1 + β2 + γ3 + α4, β1 + γ2 + α3 + β4, γ1 + α2 + β3 + γ4)

=
(

ν
[4]
s [α1, α2, α3, α4], ν

[4]
s [β1, β2, β3, β4], ν

[4]
s [γ1, γ2, γ3, γ4]

)
,

(87)

where ν
[4]
s is (informally)

ν
[4]
s [α1, α2, α3, α4] = s0α1 + s1α2 + s2α3 + s3α4 = α1 + sα2 + s2α3 + α4, (88)

and s0 = id. This can also be treated as some “deformation” of the repeated binary additions
by shifts. It is seen that the 4-ary operation ˚ [4]

s (87) is not derived and cannot be obtained
by consequent binary operations on the triples (α, β, γ) as (83).

In terms of the 4-ary cyclic shift addition, the 4-ary multiplication (85) becomes

µ[[4]][Q(α1, β1, γ1), Q(α2, β2, γ2), Q(α3, β3, γ3), Q(α4, β4, γ4)]

= Q
(

˚ [4]
s [(α1, β1, γ1), (α2, β2, γ2), (α3, β3, γ3), (α4, β4, γ4)]

)
.

(89)

The binary case corresponds to s = id, because in (74) we have only one angle α, as
opposed to three angles in (84).

Thus, we conclude that just as the binary product of B-matrices corresponds to the
ordinary angle addition (75), the 4-ary multiplication of polyadic rotation Q-matrices (76)
corresponds to the 4-ary cyclic shift addition (88) through (89).

4.3. "Deformation" of Binary Operations by Shifts

The concrete example from the previous subsection shows the strong connection (89)
between the polyadization procedure and the shifted operations (88). Here we generalize it
to an n-ary case for any semigroup.

LetA = 〈A | (+)〉 be a binary semigroup, where A is its underlying set and (+) is the
binary operation (which can be noncommutative). The simplest way to construct an n-ary
operation ν[n] : An → A is the consequent repetition of the binary operation (see (83))

ν[n][α1, α2, . . . , αn] = α1 + α2 + . . . + αn, (90)

where the n-ary multiplication ν[n] (90) is called derived [26,40].
To construct a nonderived operation, we now consider the (external) mth direct power

Am of the semigroup A by introducing m-tuples

a ≡ a(m) =

m(︷ ︸︸ ︷
α, β, . . . , γ

)
, α, β, . . . , γ ∈ A, a ∈ Am. (91)
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The mth direct power becomes a binary semigroup by endowing m-tuples with the
componentwise binary operation (+̂) as

a1+̂a2 =

m(︷ ︸︸ ︷
α1, β1, . . . , γ1

)
+̂

m(︷ ︸︸ ︷
α2, β2, . . . , γ2

)
=

m(︷ ︸︸ ︷
α1 + α2, β1 + β2, . . . , γ1 + γ2

)
. (92)

The derived n-ary operation for m-tuples (on the mth direct power) is then defined
componentwise by analogy with (90)

˚ [n][a1, a2, . . . , an] = a1+̂a2+̂ . . . +̂an. (93)

Now using shifts, instead of (93) we construct a nonderived n-ary operation on the
direct power.

Definition 7. A cyclic m-shift operator s is defined for the m-tuple (91) by

m︷ ︸︸ ︷
sα = β, sβ = γ, . . . , sγ = α, (94)

and sm = id.

For instance, in this notation, if m = 3 and a = (α, β, γ), then sa =(γ, α, β),
s2a =(β, γ, α), s3a = a (as in the previous subsection).

To obtain a nonderived n-ary operation, by analogy with (87), we deform by shifts the
derived n-ary operation (93).

Definition 8. The shift deformation by (94) of the derived operation ˚ [n] on the direct power Am

is defined noncomponentwise by

˚ [n]
s [a1, a2, . . . , an] =

n

∑
i=1

si−1ai = a1+̂sa2+̂ . . . +̂sn−1an, (95)

where a ∈ Am (91) and s0 = id.

Note that till now there exist no relations between n and m.

Proposition 5. The shift deformed operation ν
[n]
s is totally associative, if

sn−1 = id, (96)

m = n− 1. (97)

Proof. We compute

˚ [n]
s

[
˚ [n]
s [a1, a2, . . . , an], an+1, an+2, . . . , a2n−1

]
=
(
a1+̂sa2+̂ . . . +̂sn−1an

)
+̂san+1+̂s2an+2+̂ . . . +̂sn−1a2n−1

= a1+̂s
(
a2+̂sa3+̂ . . . +̂sn−1an+1

)
+̂s2an+2+̂s3an+3+̂ . . . +̂sn−1a2n−1

...

a1+̂sa2+̂ . . . +̂sn−2an+̂sn−1(an+1+̂san+2+̂s2an+3+̂ . . . +̂sn−1a2n−1
)

˚ [n]
s

[
a1, a2, . . . , an−1, ˚ [n]

s [an, an+1, an+2, . . . , a2n−1]
]
,

(98)

which are satisfied in all lines, if sn−1 = id (96).
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Corollary 2. The set of (n− 1)-tuples (91) with the shift deformed associative operation (95) is a
nonderived n-ary semigroup S [n]shi f t =

〈
{a} | ˚ [n]

s

〉
constructed from the binary semigroup A.

Proposition 6. If the binary semigroup A is commutative, then S [n]shi f t becomes a nonderived n-ary

group G [n]shi f t =
〈
{a} | ˚ [n]

s , ¯̊ [1]
s

〉
, such that each element a ∈ An−1 has a unique querelement ā

(an analog of inverse) by

ā = ¯̊ [1]
s [a] = −

(
sa+̂s2a+̂ . . . +̂sn−2a

)
, (99)

where ¯̊ [1]
s : An−1 → An−1 is an unary queroperation.

Proof. We have the definition of the querelement

˚ [n]
s [ā, a, . . . , a] = a, (100)

where ā can be on any place. Thus, (95) gives the equation

ā+̂sa+̂s2a+̂ . . . +̂sn−2a+̂a = a, (101)

which can be resolved for the commutative and cancellative semigroup A only, and the
solution is (99). If ā is on the ith place in (100), then it has the coefficient si−1, and we
multiply both sides by sn−i to get ā without any shift operator coefficient using (96), which
gives the same solution (99).

For n = 4 and a = (α, β, γ), the equation (100) is

ā+̂sa+̂s2a+̂a = a (102)

and (see (86))
ā = −

(
sa+̂s2a

)
(103)

so (cf. (80))
ā = (α, β, γ) = −(γ + β, α + γ, β + α). (104)

It is known that the existence of an identity (as a neutral element) is not necessary for
polyadic groups, and only a querelement is important [26,27]. Nevertheless, we have

Proposition 7. If the commutative and cancellative semigroup A has zero 0 ∈ A, then the n-ary
group G [n]shi f t has a set of polyadic identities (idempotents) satisfying

e+̂se+̂ . . . +̂sn−2e = 0, (105)

where 0 =

n−1(︷ ︸︸ ︷
0, 0, . . . , 0

)
is the zero (n− 1)-tuple.

Proof. The definition of polyadic identity in terms of the deformed n-ary product in the
direct power is

˚ [n]
s

 n−1︷ ︸︸ ︷
e, e, . . . , e, a

 = a, ∀a ∈ An−1. (106)

Using (95) we get the equation

e+̂se+̂s2e+̂ . . . +̂sn−2e+̂a = a. (107)
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After cancellation by a, we obtain (105).

For n = 4 and e = (α0, β0, γ0), we obtain an infinite set of identities satisfying

e = (α0, β0, γ0), α0 + β0 + γ0 = 0. (108)

To see that they are 4-ary idempotents, insert a = e into (106).
Thus, starting from a binary semigroup A, using our polyadization procedure, we

have obtained a nonderived n-ary group on (n− 1)th direct power An−1 with the shift
deformed multiplication. This construction draws on the post-like associative quiver
from [11,22], and allows us to construct a nonderived n-ary group from any semigroup in
the unified way presented here.

4.4. Polyadization of Binary Supergroups

Here we consider a more exotic possibility, when the B-matrices are defined over
the Grassmann algebra, and therefore can represent supergroups (see (37) and below).
In this case, Bs can be supermatrices of two kinds, even and odd, which have different
properties [36,37]. The general polyadization procedure remains the same as for the
ordinary matrices considered before (see Definition 2), and therefore we confine ourselves
to examples only.

Indeed, to obtain an n-ary matrix (semi)group represented now by the Q-
supermatrices (38) of the nonstandard form, we should take (n− 1) initial B-supermatrices
which present a simple (k = 1 in (20)) binary (semi)supergroup, which now have different
parameters Byi ≡ Byi ((peven | podd)× (peven | podd)), i = 1, . . . , n− 1, where peven and podd
are even and odd dimensions of the B-supermatrix. The closure of the Q-supermatrix
multiplication is governed by the closure of B-supermatrix multiplication (40)–(42) in the
initial binary (semi)supergroup.

Polyadization of GL(1 | 1, Λ)

Let Λ = Λeven ⊕Λodd be a Grassmann algebra over C, where Λeven and Λodd are its
even and odd parts (it can be also any commutative superalgebra). We provide (in brief)
the polyadization procedure of the general linear supergroup GL(1 | 1, Λ) for n = 3. The

4-parameter block (invertible) supermatrices become Byi =

(
ai αi
βi bi

)
∈ GL(1 | 1, Λ),

where the parameters are yi = (ai, bi, αi, βi) ∈ Λeven ×Λeven ×Λodd ×Λodd, i = 1, 2. Thus,
the 8-parameter ternary supergroup GL[[3]](1 | 1, Λ) =

〈{
Qy1,y2

}
| µ[[3]]

〉
is represented

by the following 4× 4 Q-supermatrices:

Qy1,y2 =

(
0 By1

By2 0

)
=


0 0 a1 α1
0 0 β1 b1
a2 α2 0 0
β2 b2 0 0

 ∈ GL[[3]](1 | 1, Λ), (109)

which satisfy the ternary (nonderived) multiplication

µ[[3]]
[
Qy′1,y′2

, Qy′′1 ,y′′2
, Qy′′′1 ,y′′′2

]
= Qy′1,y′2

Qy′′1 ,y′′2
Qy′′′1 ,y′′′2

= Qy1,y2 . (110)

In terms of the block matrices Byi , the multiplication (54) becomes (see (39)–(42))

By′1
By′′2

By′′′1
= By1 , (111)

By′2
By′′′1

By′′′2
= By2 . (112)

In terms of the B-supermatrix parameters, the supergroup GL[[3]](1 | 1, Λ) is defined
by the following component ternary multiplication
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α′1β′′2 a′′′1 + a′1α′′2 β′′′1 + α′1b′′2 β′′′1 + a′1a′′2 a′′′1 = a1, β′1a′′2 α′′′1 + β′1α′′2 b′′′1 + b′1β′′2 α′′′1 + b′1b′′2 b′′′1 = b1,

α′1β′′2 α′′′1 + a′1a′′2 α′′′1 + a′1α′′2 b′′′1 + α′1b′′2 b′′′1 = α1, β′1α′′2 β′′′1 + β′1a′′2 a′′′1 + b′1β′′2 a′′′1 + b′1b′′2 β′′′1 = β1,

α′2β′′1 a′′′2 + a′2α′′1 β′′′2 + α′2b′′1 β′′′2 + a′2a′′1 a′′′2 = a2, β′2a′′1 α′′′2 + β′2α′′1 b′′′2 + b′2β′′1 α′′′2 + b′2b′′1 b′′′2 = b2,

α′2β′′1 α′′′2 + a′2a′′1 α′′′2 + a′2α′′1 b′′′2 + α′2b′′1 b′′′2 = α2, β′2α′′1 β′′′2 + β′2a′′1 a′′′2 + b′2β′′1 a′′′2 + b′2b′′1 β′′′2 = β2.

(113)

The unique querelement in GL[[3]](1 | 1, Λ) can be found from the equation (see (48)):

Qy1,y2Qy1,y2 Qy1,y2 = Qy1,y2 , (114)

where the solution is

Qy1,y2 =

(
0 By1

By2 0

)
, (115)

with (see (49))
By1 = B−1

y2
, By2 = B−1

y1
, (116)

and B−1
y1

, B−1
y2
∈ GL(1 | 1, Λ).

Definition 9. We call GL[[3]](1 | 1, Λ) a polyadic (ternary) general linear supergroup obtained by
the polyadization procedure from the binary linear supergroup GL(1 | 1, Λ).

The ternary identity E(3)
4 of GL[[3]](1 | 1, Λ) has the form (see (46))

E(3)
4 =

(
0 E2

E2 0

)
, (117)

where E2 is the identity of GL(1 | 1, Λ), and it is ternary idempotent:

E(3)
4 E(3)

4 E(3)
4 = E(3)

4 . (118)

The ternary supergroup GL[[3]](1 | 1, Λ) contains the infinite number of ternary idem-
potents Qidemp

y1,y2 defined by the system of equations

Qidemp
y1,y2 Qidemp

y1,y2 Qidemp
y1,y2 = Qidemp

y1,y2 , (119)

which gives
Bidemp

y1 Bidemp
y2 = E2. (120)

Therefore, the idempotents are determined by 8− 4 = 4 Grassmann parameters. One
of the ways to realize this is to exclude from (120) the 2× 2 B-supermatrix. In this case, the
idempotents in the supergroup GL[[3]](1 | 1, Λ) become

Qidemp
y1,y2 =

(
0 By1(

By1

)−1 0

)
, (121)

where Byi ∈ GL(1 | 1, Λ) is an invertible 2× 2 supermatrix of the standard form (see Remark 5).
In the same way one, can polyadize any supergroup that can be presented by supermatrices.

5. Conclusions

In this paper we have given answers to the following important questions: how can
one obtain nonderived polyadic structures from binary ones, and what would be a matrix
form of their semisimple versions? First, we introduced a general matrix form for polyadic
structures in terms of block-shift matrices. If the blocks correspond to a binary structure
(a ring, semigroup, group, or supergroup), this can be treated as a polyadization procedure
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for them. Second, the semisimple blocks which further have a block-diagonal form give rise
to semisimple nonderived polyadic structures. For a deeper and expanded understanding
of the new constructions introduced, we have given clarifying examples. The polyadic
structures presented can be used, e.g., for the further development of differential geometry
and operad theory, as well as in other directions which use higher arity and nontrivial
properties of the constituent universal objects.
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